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Abstract- The equilibrium equations of a bubble-droplet system are derived under more general conditions
than previously reported. The stability of such a bubble-droplet system is examined via a diffusion argument.
It is shown that the bubble-droplet system possesses not only a dissolution limit, known previously, but also a
cavitation limit. Results of diffusion consideration supports that of thermodynamic analysis which
demonstrated that both limits exist for a system without a droplet. Thus, the results of this paper further
confirms the earlier conclusion that a bubble can remain in a state of stabIeequilibrium in a finite system under
certain circumstances. Applications of the results require that a system boundary be identified such that little

or no net mass transfer occurs across the boundary.

l'\O~'El'\CLATURE

H, Henry's law constant;
F, Helmholtz free energy;
II, number of moles;
N, total number of moles;
p, partial pressure of gases;
P, liquid pressure or total pressure of mixture of

gases;
r, radius of a bubble;
R, universal gas constant;
T, absolute temperature;
v, molar specific volume;
V, volume;
x, mole fraction.

Greek symbols
JI, chemical potential;
(J, surface tension or surface tension at the

bubble-liquid interface.

Subscripts
1, solvent component;
2, solute component;
gL, interface between the droplet and the

surrounding liquid;
s, bubble-liquid interface.

Superscripts
" gas or vapor (bubble); .

liquid immediately adjacent to.the bubble
(droplet) ;
liquid surrounding the droplet.

'''iRODUCTION

GAS AND/OR vapor bubbles are found in many scientific
and engineering systems. These bubble-related pheno
mena received wide attention in the past 30 years and
were the subjects of many theoretical and experimental
studies. This is particularly true in the areas of boiling
and cavitation where bubbles play the most important
role. Many aspects of these bubbles become clear as a

result of intense investigations in the past. However,
one particular aspect, i.e. the origin of bubbles in a
liquid, is still not well understood. It is well known in
cavitation [1] that the growth ofa bubble begins with a
nucleus in the liquid and many experimental results can
only be explained by postulating the existence of either
free or hydrophobic nuclei in the liquid [2]. In boiling,
nucleation sites on the solid boundary are observed to
be the places for the initiation ofbubble growth. Certain
nucleation sites attached to a solid surface can be
demonstrated theoretically to be stable [1]. Therefore,
there is little disagreement between experimental ob
servation and theoretical consideration regarding the
existence and persistence of nucleation sites attached
to a solid surface. This is not the case when free nuclei
are considered to be of the source for bubble growth.
It is well known that a vapor bubble cannot remain in
equilibrium when the pressure isgreater than the vapor
pressure and that a vapor bubble is in a state ofunstable
equilibrium when the pressure is less than the vapor
pressure. A gas bubble will grow in a supersaturated
solution and collapse in an undersaturated solution.
Even in a saturated solution, a gas bubble is considered
to be unstable since surface tension willforce the bubble
into solution, according to Epstein and Plesset [3] who
analyzed the growth and collapse of a gas bubble in an
infinite system. Therefore, gas and vapor bubbles are
considered to be unstable and cannot persist in a liquid
from a theoretical viewpoint which contradicts
experimental observations.

In 1977, Mori et al. [4] reported the results of
experimental and theoretical investigations of bubble
dissolution in a finite system. Their system, shown in
Fig. 1, consisted of a spherical gas/vapor bubble in a
spherical droplet which was surrounded by a second
liquid. The inert gas is assumed to be insoluble in the
surrounding (second) liquid which is immiscible with
the droplet and forms a distinct interface between the
two liquids. There is no mass transfer across the
interface between the two liquids. Thus, the
surrounding liquid serves primarily for transmitting
the pressureto the bubble-droplet system. Mori et al.
performed a thermodynamic analysis of the system and
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FIG. 2. System pressure vs equilibrium bubble radius for a
nitrogen bubble in water with N. = 10- 10 mol for various

values of N zlN I' (From ref. [5].)
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COi'iDITlOi'iS OF EQUILIBRIUM

To derive the general equilibrium equations, let us
employ the bubble--<lroplet system of Mori et al. as
shown in Fig. 1. As described previously, the droplet
and the surrounding liquid are assumed to be
immiscible and the inert gas is assumed to be insoluble
in the surrounding liquid. Thus, no mass transfer occurs
across the interface between the two liquids. Oursystem
contains the bubble and the droplet. The pressure of the
system is not excessively high so the solution can be
assumed to be dilute and the liquids incompressible.

The free energy variations during an infinitesimal

duced here for convenience of discussion since we shall
refer to this figure quite frequently. Figure 2 contains
the essential feature of the result ofMori et al.for bubble
dissolution and that of bubble cavitation. It appears
that Cha's result bridged the gap described previously
and helped in resolving the dilemma between theo
retical and experimental observations regarding the
persistence of free nuclei iri a liquid.

Since Cha's analysis is similar to that of Mori et al.,
the result of Cha's analysis should also apply to the
bubble--<lroplet system. However, as Cha [6] pointed
out, there is an important dilTerence between the two
analyses. Cha employed the constraint that the total
volume is constant while Mori et al. assumed that the
volume of the liquid droplet is constant. It is the
objective of this paper to clarify this dilTerence and to
derive the equilibrium equations under more general
conditions. Furthermore, we shall examine the stability
of bubbles in a state of equilibrium by employing the
dilTusion argument of Plesset and Sadhal [7], who
recently reaffirmed the findings ofMori et al.but did not
address the problem of the stability of a bubble under
reduced or negative pressures.

/' LIQUID-LIQUID
/' INTERFACE

(System Boundo ry I

SURROUNDING L1QUI D t " I

FIG. I. Schematicof a bubble-droplet system.

the results show that, for a given system, when the
pressure is below a critical value, a bubble can ha ve two
equilibrium radii; the smaller one is unstable and the
larger one is stable. When the pressure exceeds the
critical pressure of the given system, there is no
equilibrium radius for a bubble. Thus, the critical
pressure corresponds to the lowest pressure that such a
bubble can remain in a state of stable equilibrium for a
finite system.

This important result was confirmed by their
experiments. However, Mori et al. did not investigate
the stability of the bubble-droplet system at reduced
and negative pressures. Based on an equilibrium
analysis of a bubble containing insoluble gases, Blake
has shown that there are two equilibrium radii for a
bubble when the pressure is less than the vapor pressure
of the liquid and greater than some critical pressure; the
smaller one is stable and the larger one is unstable [1].
When the pressure is less than the critical pressure, a
bubble can no longer remain in a state of equilibrium.
This critical pressure is often referred to as the
cavitation limit of a bubble containing some insoluble
gases [1]. When the pressure is greater than the vapor
pressure of the liquid, this theory predicts that a bubble
can always remain in stable equilibrium regardless of
how large the system pressure is. This is, of course, the
consequence of the assumption that the gas in the
bubble is insoluble. Thus, it appears that a gap exists
between the result of Mori et al. [4] and that of
equilibrium analysis of an insoluble bubble [I]. The
former has been successfully applied to the prediction
of dissolution of a bubble in a finite system while the
laller has some success in predicting cavitation
inception.

In 1981, Cha [5] reported a thermodynamic analysis
of a gas/vapor bubble in a finite system similar to that of
Mori et al. [4]. The major contribution from Cha's
analysis was the result that a bubble can remain in a
state of stabIeequilibrium provided that the ratio of the
total number of moles of the solute to the total number
of moles of the solvent in the system is not too small and
that the system pressure falls between an upper bound
and a lower bound. Cha termed the upper bound
"dissolution limit" and the lower bound "cavitation
limit" of a bubble in a stateofstable equilibrium. Figure .
2 shows the results of system pressure vs bubble radius
at equilibrium condition from' Cha's analysis repro-
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(4)

transformation in the bubble and the droplet are:

for the bubble,

dF' = -P' dV' +/1'1 dn'1 +Jli dni (1)

for the droplet,

dF" = - P" d V" + Jl1 dn1 + Jl; dn;. (2)

The total free energy variation for the bubble-droplet
system is then

200 200 L
dF=dF'+dF"+-dV,+-g dYgv (3)

T TgL

Itshould be noted that in equation (2),we have retained
the term - P" d V" in the free energy expression for the
droplet. Thus, equation (2) is more general than the
equation employed by Mori et al. [4]. The change in
free energy ofthe droplet-bubble system must equal the
external work,

dF = -P'" dYgL'

We now introduce the following constraints:

~L = V'+ V", dYgL = dV'+dV", (5)

11'1 +111 = N 1 = constant, dll'1 = -dIl1, (6)

IIi + 11; = N 2 = constant, dlli = - dll;. (7)

In equation (5), we did not assume that d V" = 0; thus
equation (5) is less restrictive than the equation em
ployed by Mori et at. Also, we did not assume that the
total volume of the system is constant (dYgL # 0),
therefore' the result is more general than that reported
by Cha [5].

Substituting equations (IH3) and equations (5H7)
into equation (4) resulted in the following condition for
equilibrium:

(
- P' + P''' + 200 + 2OOgL)dV'

T TgL

+(_P"+P"'+ 2OO
gL)dV"

TgL

+ <Il'1 - Jl'D dn~ + <Ili - Jl;)dlli = O. (8)

Ifd V" = 0, equation (8) reduces to the equation derived
by Mori et at. The equilibrium equations follow
immediately from equation (8),

200 20" L
-P'+P"'+- +-g-= 0, ,(9)

T TgL

-P"+P"'+ 20"gL = 0, (10)
TgL

equations since they can be written down directly.
Equation (10) describes the mechanical equilibrium
between the droplet and surrounding liquid and
equation (13) describes the mechanical equilibrium
between the bubble and the droplet. Equations (11) and
(12) dictate diffusion equilibrium of the individual
component between the bubble and the droplet.
Equations (9),(11), and (12) were employed by Mori et
at., while equations (llH13) were employed by Cha in
his analysis. Now with the help of equation (10), the
difference between the analysis of Cha [5] and that of
Mori et at. [4] becomes clear. Since equation (10)
describes the mechanical equilibrium (force balance)
between the droplet and the surrounding liquid, its only
function is to transmit the external pressure (P"') to the
droplet through the spherical interface between the two
liquids. Cha's system does not have such a spherical
interface between the two liquids. Thus, the droplet
pressure (P") must be specified. Under such a
circumstance, the equilibrium and stability conditions
ofCha [5] and Mori et at. [4] must be the same. In other
words, if the droplet pressure, instead of the external
pressure of the surrounding liquid, is specified, the
result of Cha's analysis should apply to the bubble
droplet system of Mori et at. This is, indeed, the
consequence of the assumption of no mass transfer
across the interface between the droplet and the
surrounding liquid. This important result implies that
the bubble-droplet system must have not only a
dissolution limit but also a cavitation limit as shown in
Fig. 2. We shall further demonstrate this result through
stability considerations in the next section.

It should be emphasized that we have derived the
equilibrium equations (1IH13) without employing the
constraint of either constant total volume or constant
liquid (droplet) volume. Since equations (llH13) are
identical to those derived by Cha, the results and
conclusions reached in that paper are, therefore, not
limited to the case ofconstant total volume. This should
clarify some of the concern expressed in refs. [6, 7]. It is
also interesting to note that equation (9) is identical to
that derived by Mori et al., who assumed that the
volume of the droplet is constant.

Following the procedures outlined in ref. [5], an
equilibrium equation can be obtained by combining
equations(lOHI3) and the expressions for the chemical
potentials,

N 2 20" 20"gL

P"'=P'1+ Nt/1l+4nT3(I-p't/H)/3RT---;:- TgL'

(14)

Equations (lOH13) are the primitive equilibrium

Jl~ =Jl1, (11)

Jli = Jl;' (12)

Subtracting equation (10) from equation (9), we obtain

20"
- P' +P"+- = O.

T
(13)

As pointed out by Cha, equation (14) isslightly different
from the equilibrium equation reported by Mori et at.
[4]. They employed II~ and IIi (which are variables) in
their equation while equation (14) employs N 1and N 2,

which are constants for a given system. If a distinct
spherical interface does not exist between the droplet
and the surrounding liquid, TgL..... 00 while N 1remains
finite (or O"gL = 0), equation (14) becomes identical to
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RESULTS Al':D D1SCUSSIO"S

To confirm the results of the stability analysis ofCha
[5], we shall attempt to reproduce some of the results
shown in Fig . 2 by using the diffusion argument. Figure
2 is the plot of system pressure P" vs equilibrium radius
for various values of N 2/N I of a nitrogen bubble in
water. Cha [5] has found that the equilibrium is stable if
the slope is negative and unstable if the slope is positive
in Fig. 2. The stability boundary(dashed curve in Fig .2)
separates the region of stable equilibrium from that of
unstable equil ibrium. We shall select one typical
equilibrium curve (N 2/N I = 3.5 X 10- 5 and N I

= 10- 10 mol) and examine the stability of these
equilibrium positions. The values of constants used in
calculations a re the same as Cha [5]: T = 293 K, P'I
=2.337 X 103 Pa,R=8.313Jmol- ' K- ' , a = 7.32
x 102 N m- I , and H = 8.13 X 109 Pa.

Figures 3(a)-3(f) show the results ofdiffusion analy
~is using equations (15) and (16). We have set ael = 0
Just to demonstrate the equivalence of Figs . 2 and 3.
Later on we shall show the results with a l :f. 0 and
examine the difference between the two cas~s.

In Fig. 3(a), the system pressure (0.15 MPa) is
relatively high, no bubble can remain in equilibrium
and X2 does not intersect X2.•' Asshown in Fig. 2,there is
indeed no equilibrium position at this pressure with
N 2/N I = 3.5 X 10- 5•

When the system pressure equals 0.1 I MPa, Fig. 3(b)
shows th at X2 .s intersect tangentially X2 at one position.
This is the only equilibrium position of the given system
at this pressure. Figure 3(b) also shows that X2 is
always greater than X2 except at the tangential p~int
where they are equal. If there is an infin itesim al
disturbance from this equilibrium position that cau ses
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STAnILITY Al':D DIFFUSION CO"SIDERATION

The stability of a bubble in a state of equilibrium can
be determined by examining the free energy of the
system ; the equilibrium is stable if the free energy is a
local minimum and unstable if the free energy is a local
maximum. This approach has been employed by both
Mori et al. [4] and Cha [5]. An alternate approach was
recently reported by Plesset and Sadhal [7], who
examined the stability ofa bubble through some kind of
diffusion argument. The results of Plcsset and Sadhal
agree with those ofMori et al., who found that a bubble
can rem ain in a state ofstable equilibrium if the pressure
is below some critical pressure (greater than the vapor
pressure of the liquid). However, both Mori et al. and
Plesset and Sadhal did not examine the stability of a
bubble when the pressure is below the vapor pressure of
the liquid. Cha [5] has demonstrated, through
thermodynamic analysis, that there is also a lower limit
of pressure below which a bubble can no longer remain
in a state of stable equilibrium. In this paper we shall
confirm the results of Cha by using the diffusion
argument proposed by Plesset and Sad hal [7].
Furthermore, we shall use this diffusion approach to
examine the difference between the stability of a bubble
in a liquid with or without the second interface
described previously.

Assuming that mechanical equilibrium exists be
tween the bubble and the surrounding liquids,
Plcsset and Sadhal [7] obtained the following expres
sion for the average mole fraction ofthe gas in the liquid
droplet :

"_ N2RT-(P'''-p'l +2a/r+ 2aeJred4rrr3/3
X2 - (N I+N2)RT-(P"'+2a/r+2aeJred4rrr3/3'

(15)

If diffusion equilibrium exists at the interface between
the bubble and the liquid, the mole fraction on the
liquid side of this interface is given by

X2.s = P2/H = (P'''-P'I +2a/r +2aeJred/H. (16)

Complete thermodynamic equilibrium exists only if
diffusion equilibrium between the bulk of the liquid and
the interface is assured,

that of Chao We shall discuss the implication of this
particular case later and proceed to examine the
stability of equilibrium given by equation (14).

FIGS. 3(a) and 3(b). Nonequil ibrium mole fraction vs bubble
radius for a nitro gen bubble in water with N I = 10- 10 mol,
N z = 3.5 X 1O- 1 S mol, and U.L = O. Equilibrium positions

are at the intersections of x~ and x~ .s-

(17)

It should be noted that we are only interested in the
states of complete thermodynamic equilibrium, given
by equation (17), and in infinitesimal deviations from
these states. These can be accomplished by plotting X2
and X2.s vs bubble radius, and the equilibrium positions
are determined by the intersections of these two curves.
The stability can then be determined by examining the
behaviors of X2 and X2 .• right next to these points of
intersections as demonstrated by Plesset and Sad hal
[7].
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positive slope, therefore, it is unstable. The larger one
stays on the RHS of the stability boundary and has a
negative slope, and therefore is stable.

When the pressure is slightly below the vapor
pressure of the liquid, it is possible to have three
equilibrium radii as shown in Fig. 2. Figure 2 also
indicates that the medium equilibrium position is stable
and that the smallest one, as well as the largest one, is
unstable. This is indeed also the result of the diffusion
analysis as shown in Fig. 3(d). It is interesting to note
that even when the pressure isbelow the vapor pressure,
a bubble can still remain in a state ofstable equilibrium
under certain circumstances.

Figure 3(e)shows the result of the diffusion analysis
when the system pressure equals -0.0153 MPa. There
are two equilibrium radii at this negative pressure. The
smaller one is obviously unstable from the diffusion
argument. The larger one is the point of tangential
intersection between x; and x;... If there is an
infinitesimal disturbance which causes the bubble to
grow a little from this equilibrium position, the
concentration in the bulk of the liquid becomes greater
than that at the bubble-liquid interface. This would
cause diffusion from the bulk liquid to the bubble and,
therefore, the bubble would continue to grow in
definitely since there is no stable equilibrium radius
greater than this radius. On the other hand, if the
disturbance is in the direction of reducing the radius by
an infinitesimal amount, x; is again greater than x; .s ,

which causes diffusion from the liquid towards the
bubble and the bubble would return to its original
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the size of the bubble to increase by a small amount, the
concentration at the interface (x; .s ) becomes greater
than the concentration of the bulk liquid (x;). This
would cause mass diffusion from the interface to the
bulk liquid and the bubble will return to its equilibrium
position. Thus, the equilibrium isstable against growth.
On the other hand, if the disturbance is in the direction
of reducing the size of the bubble from its equilibrium
position, then Fig. 3(b)shows that the concentration at
the interface is greater than that of the bulk liquid. This
would cause diffusion from the bubble to the bulk liquid
and the bubble would continue to shrink until it
collapses completely since there is no equilibrium
position smaller than the original one. Thus, the results
in Fig. 3(b) indicate that the equilibrium is stable
against growth but unstable against collapse. The
equilibrium position in Fig. 3(b) corresponds to the
relative maximum in Fig. 2 with P" = 0.11 MPa and
N 2/N I = 3.5 X 10- 5

• Cha [5] has named this
maximum pressure the "dissolution limit" of the
bubble. Stability considerations from the diffusion
argument indicates that this name is indeed proper
since the bubble is unstable against collapse and will
completely dissolve into solution.

Figure 3(c) shows the results of diffusion analysis
when the system pressure equals 0.05 MPa. There are
two equilibrium positions. It can be shown using the
diffusion argument that the smaller one is unstable
against either growth or collapse while the larger one is
stable against both growth and collapse. This result
again corresponds to the result shown in Fig. 2. At a
pressure of 0.05 MPa, there are indeed two equilibrium
positions with N 2/N I = 3.5 X 10- 5• The smaller one
stays on the LHS of the stability boundary and has a

BUBBLE RADIUS,l'm BUBBLE RADIUS, I'm

FIGs. 3(c)and 3(d). Nonequilibrium mole fraction vs bubble
radius for a nitrogen bubble in water with N I = 10- 10 mol,
N 2 = 3.5 X 10- I S mol, and UgL = O. Equilibrium positions

are at the intersections of X2 and X2.s'

FIGS. 3(e)and 3(0. Nonequilibrium mole fraction vs bubble
radius for a nitrogen bubble in water with N I = 10- 10 mol,
N 2 = 3.5 X 10- 15 mol, and UgL = O. Equilibrium positions

are at the intersections of xi and X2 .•'
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equilibrium positron. Thus, the larger equilibrium
radius in Fig. 3(e)is stable against collapse but unstable
against growth. These results again correspond exactly
totheresuItsshowninFig.2withN2lN1 = 3.5 x 10- 5•

If one starts with a pressure of -0.0153 MPa and draw
a horizontal line across Fig. 2, this horizontal line will
intersect the equilibrium curve at two points. The first
intersection (with a smaller radius) has a positive slope
and therefore is unstable. The second intersection
occurs tangentially at the local minimum and sits right
on the stability boundary. Cha [5] has named this point
the "cavitation limit" of the bubble. Diffusion con
sideration again supports this term since this par
ticular equilibrium radius is stable against collapse and
unstable against growth and will grow indefinitely. This
isjust the opposite of the result shown in Fig. 3(b)where
the bubble will dissolve completely.

Figure 3(f) shows the plot of nonequilibrium mole
fraction vs bubble radius at a pressure of -0.05 MPa.
There is only one equilibrium radius and it is unstable.
Thus, thecavitation limit shown in Fig. 3(e)is indeed the
pressure below which no stable equilibrium radius
exists. This is clearly shown in Fig. 2.

Figure 2 also indicates that when the gas inventory is
small compared to the water inventory (for example,
N 21N1 = 10- 5

), there is no equilibrium position when
the pressure is above the vapor pressure and there is an
unstable equilibrium radius when the pressure is below
the vapor pressure of the liquid. This result is expected
since when the gas inventory becomes small compared
to the liquid (water) inventory, the equilibrium charac
teristics of the bubble should approach that ofa vapor
bubble. This result is again confirmed by the diffusion
analysis shown in Figs. 4(a) and 4(b).

We shall now proceed to examine the effect of a
second interface (aiL 1= 0) on the stability of a bubble
droplet system employed by Mori et al. [4]. As we
pointed out previously, if the pressure in the droplet
(P"), instead of the pressure in the surrounding liquid
(P'"), is specified, then the results of Cha's analysis can
be applied directly to the bubble-droplet system of
Mori et al. The only difference lies in equation (10),
which states that there is a difference in P' and P'" due
to the presence of a liquid-liquid interface. If one
specifies P'" instead of P", the equilibrium positions
shown in Figs. 2-4 will be shifted, but the basic
characteristics should remain the same. This is demon
strated by the results shown in Figs. 5(a) and 5(b).The
differencebetween Figs. 2-4 and Fig. 5 is due to the term
2a lJ rlL.WehaveemployedagL = 6.34 x 1O-2Nm- 1

•

It should be noted that'lL is not independent of the
other variables and can be calculated approxi
mately as follows.

For dilute solutions, the volume of the liquid droplet,
excluding the bubble, is approximately

V" ,;, n~v~ = (N 1 - p~ V'IRT)v'{ (18)

where V' = 4nr 3/3 is the volume of the bubble. The
radius of the droplet is given by the following equation:

(19)

Eliminating V" from equations (18) and (19) gives the
following expression for 'IL:

,iL ,;, 3[V' +(NI-P~V'IRT)v'{]/4n. (20)

In Figs. 5(a) and 5(b), we have specified the system
pressure using P'", instead of P" as in Figs. 2-4. Ifone
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FIG. 4. Nonequilibrium mole fraction vs bubble radius for a
nitrogen bubble in water with N 1 = 10- 10 mol, N 2 = 10- 15

mol, and UIL = O. Equilibrium positions are at the inter-
sections of X2 and X2 .s-

. FIG.5. Nonequilibrium mole fraction vs bubble radius for a
nitrogen bubble in water with N I = 10- 10 mol,
N z = 3.5 X 10- 1 5 mol, and UIL 'I O. Equilibrium positions

are at the intersections of x2and x2.s-
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compares Fig. 5(a) with Fig. 3(c), the difference caused
by the presence of a second interface is seen to shift the
equilibrium positions slightly, but the basic charac
teristics remain unchanged as westated previously. The
interesting question to be answered is whether the
bubble-droplet system of Mori et al., does have a
"cavitation limit" or not. Figure 5(b)shows that such a
"cavitation limit" indeed exists for the bubble-droplet
system. Comparison between Figs. 5(b) and 3(e)again
shows that the basic characteristics of the two systems
(with and without a second liquid-liquid interface) are
similar.

Before summarizing the results obtained so far, it is
helpful to point out some further implications and
possible applications of the results of Cha [5]. As
mentioned previously, the external pressure is
transmitted to the bubble-droplet system through the
spherical interface between the droplet and the
surrounding liquid. However, in many practical
systems, such a spherical interface between two
immiscible liquids may not exist. Transmitting pressure
to the liquid surrounding a bubble does not always
have to go through a spherical liquid-liquid interface.
For example, consider a closed container containing
liquid and gas. Equilibrium between the gas and the
liquid in the absence of gravity is a perfect application of
the analysis of Cha since a second spherical interface
between two immiscible liquids does not exist. Keller
[8] was the first to demonstrate that a bubble can
remain in a state of stable equilibrium under such
circumstances. Keller also remarked that the Russian
astronaut, Colonel Nikolayev, reported an observation
of a closed bottle containing liquid and gas, which he
made while orbiting around the earth in a satellite. The
gas formed a single spherical bubble near the center
of the bottle. Since gravitational acceleration in an
orbiting satellite is counter balanced by the centrifugal
acceleration, the equilibrium analysis of Cha [5] is
directly applicable. The major assumption made in the
thermodynamic analysis is that there is no net mass
transfer across the system boundary, be it large or
small. In any system, if such a boundary can be identi
fied, or if the practical condition closely approxi
mates the ideal situation, the the results of Cha [5] are
expected to apply.

SUMMARY Al\'D COl\'CLUSIOl\'S

We have derived the equilibrium equations for a
bubble-droplet system without assuming either that
the total volume or that the liquid volume is constant.
We have demonstrated that the difference between the

results of Mori et al. [4], for a bubble-droplet system
and those ofCha [5] is due to the presence of a second
liquid-liquid interface. However, the presence of this
interface does not change the basic characteristics of the
equilibrium and stability of a bubble. This is further
demonstrated by the result that the bubble-droplet
system of Mori et al. also have, in addition to a
dissolution limit, a cavitation limit, similar to that
shown by Chao The reason that the results of the two
systems are similar is due primarily to the assumption
of no mass transfer between the system boundary and
the surrounding liquid.

It has been demonstrated that the diffusion analysis
of Plesset and Sadhal [7] supports the results of
thermodynamic analysis of Cha [5]. The names
"cavitation limit" and "dissolution limit" of a bubble
introduced by Cha are shown to be reasonable from
diffusion considerations.

It has been shown that the equilibrium equations
reported previously by Cha [5] are not restricted to the
case of constant total volume. This, and all the other
results described in this paper, implies that the results
and conclusions reached by Cha [5] are correct and
have wider applications. It is not necessary to repeat all
the results of that paper here and the readers are
referred to the original paper. It is also pointed out that
a bubble-droplet system may not always exist in a
practical situation. In order to apply the equilibrium
theory of Cha, one needs to define a system boundary
where little or no net mass transfer occurs across this
boundary.
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SUR LA CAVITATION DE BULLE ET LA DISSOLUTION

Resume-i-Les equations d'equilibre du systerne bulle-goutte sont ecrites pour des conditions plus generales
que celles reporteesjusqu'ici. La stabilite d'un tel systeme est examinee a travers un argument de diffusion. On
montre que Ie systeme bulle-goutte possede non seulement une limite de dissolution, deja connue, mais aussi
une limite de cavitation. Les resultats de la consideration de la diffusion confortent ceux de l'analyse
thermodynamique qui dernontrent que les deux limites existent pour un systeme sans goulle. Ainsi, cette etude
confirme une conclusion anterieure selon laquelle une bulle peut rester dans un etat d'equilibre stable, dans un
systerne fini, sous certaines circonstances. Des applications de ces resultats demandent qu'une frontiere du
systerne soit identifiee de telle sorte qu'un transfert massique faible ou nul existe atravers cette frontiere.

OBER BLASENBILDUNG UND -AUFL()SUNG

Zusammenfassung-Die Gleichungen fur den Gleichgewichtszustand eines Blasen-Tropfchen-Systems
werden unter allgemeineren Voraussetzungen abgeleitet als in einer bereits friiher veroffentlichten Arbeit. Die
Stabilitiit eines solchen Blasen-Tropfchen-Systems wird mit Hilfe eines Diffusionsterms untersucht. Es wird
gezeigt, daB das BIasen-Tropfchen-System nicht nur-wie bereits bekannt-eine Grenze fiir die Auflosung
besitzt, sondern auch eine Grenzcfiir die Blasenentstehung. Die Ergebnisse der Diffusionsbetrachtungstiitzen
die der thermodynarnischen Untersuchung, die gezeigt hat, daB beide Grenzen fiir ein System ohne Tropfchen
existieren. So bestiitigen die Ergebnisse dieser Arbeit den bereits friiher gezogenen Schluli, daB cine Blase in
einem begrenzten System unter bestimmten Umstiinden in einem stabilen Zustand verharren kann. Die
Anwendung der Ergebnisse fordert, daB eine Systemgrenze so festgelegt wird, dafl insgesamt wenig oder gar

kein Stoff transport iiber diese Grenze stattfindet.

o KABHTAUHH H PACfBOPEHHH OY3hIPhKOB

AHHOTaLlHH-BbIBe.nellbi ypasneuna paBnOBeCIIJl CIICTe~lbI nyaupex-xanns npn fionee ofiunrx, qe~1 panee
ycnosnsx. YCTOltqllBOCTb 'raxoii C!lCTC~lbI nyaupex-xanna IICCJlc.nOBaJlaCb c noxrouu.ro ,ITlIlplflYJllon
nora nonxona. Floxaaauo, qTO CIICTeMa nyaupes-xanns ofinaziaer lie TO.1bKO npenerroxr pacraopemrs,
113BeCTnbl~1 panee, 110 II npezienoxr xasurauna. )J;annble .nlllfllflY31l0llnOrO anamna cornacyiorca c
pe3YJlbTaTa~1II .TCp~IOD.llna~lIIqeCKOrO anarnna, 113 xoroporo CJ1CD.yCT uamrsue o6onx npenenos B
cnysae OTcyrCTBlIlI B CIICTe~le KanJIII. Taxaxi oopaaoxr, peaym.rarsr naunon pafiorsr eute pas
nonraepxnaror panee cnenaanun asraon, qTO npa onpeneneuusrx YCJlOBUllX nyasrpex MOlKeT
uaxonnrsca Bcocroannn ycrotixnaoro paeuoaecns B xone-nroil CIICTe~le. C TOqKII apemrs npnnoaceuns
pcayns'raros neofixonusro onpenenars clICTeMY na rpaunue TaKII~1 ofipasoxr, qTOObl xepea rpamruy

nepenoe MaCCbI OblJl neana qllTeJlbnbl~1 IIJl1I soofime oTcyTCTBoBaJl.




